AD-A161 662 ON THE LIMIT DEHﬂVIOR OF A HULTI-COHPMTHEIT STORAGE /1
- MODEL WITH AN UNDERL. . <U)> FLORIDA STATE UNIY
TALLAHASSEE DEPT OF STATISTICS E S TOLLAR FEB 85
UNCLASSIFIED FSU-STATISTICS-M694 ARD-19367. 31-MA F/6 12/1 NL




DA A St

PSRN

PP S

R, W e e P F

|
IN
o
=
i
[$,]

[l

EEF

5
o

FPEEEER L

rr
r
re

K
=" g

I

N

MICROCOPY RESOLUTION TEST CHART
NAT!ONAL BUREAU OF STANDARDS - 1963 - A




| SRR SRt At L Ty T AR/ S S e

HAMPEL RN A A AR S e S A S S0 & (o 8 G A i SN g G s ~""'l

. ) o Apo /9367.3/mA

/ 7§}
CUSTTY CLASSIFICATION OF THIS PAGE

Z
REPIRT T, F TTAT TN PAGE
R S 2. @WT ACCESSTON &, 3. RECTIPTETS CATALOG (GFmE.
11694
USARD D-77 |
. HITLE (and suntitle) b, LYPE ¥ QEPT v v COVERED
ON THE LIMIT BEHAVICR OF A MULTI-COMPARTMENT Technical
STORAGE MODEL WITH AN UNDERLYING MARKOV CHAIN 6. PERFORT (IS ORG  2EPMT fER
I1; WITH NORMALIZATION _
v AUTITR(s) 8, G rACT W GR2ART I9ER(s)
8 Eric S. Tollar USARO No. DAAG 29-82-K-0168
PERFORHIAG DPRAMTZATI T 1E Aq) ANVIRESS T, PRCRAT ELERT, PROJECT, TASK
v The Florida State University MWEA, 2 IR URTT HUIERS
0 Department of Statistics
Tallzhassee, FL 32306-3033
© TENMLLLING OFFICE AGE AdT ATIRESS T2 REPORT DATE
< U.S. Army Research Office - Durham | February, 1985
| P-0. Box 12211 13, EBET OF PARES
‘:: Research 1riangle Park, NC 27709 23
< SOMTTORTIN AGERNY TGE % AnimESS (Gf Iv, SECURITY CLASS. (of this report)

diffoerant froam Contralline Office)

153, DECLASSIFICAT I':S!-l/u&)‘ [RIGRAT) ] wr
SCHEMHE

v, DISTRISIN T T STRI AT (of this report) i

approved for public release; distribution unlimited )
% r OISTRIAOTIVT STATEAENT (af Lo anstract eatersd in R1ock 20, 1f Al Fferent from repory
{ ‘
b
{ TN
t , (R B T
o SUPPLECEHTARY NUTES : 1

-y

1o KEY VRNS
Storage model, larkov chain, Dual Markov chain, Auxilliary Markov chain,

v

Multivariate Brownian Motion.

* do ARSTRACT (Continne nn reversa sids if nacessary and idantify hy hlock numher)
] r‘ L'—“
/

‘o _ . . L
Tre pre paper considers a multi-compartment storage model with one way

fiow. The inputs and outputs for each ccmpartment are controlled by a denumer-

s aaam e a0 o

able state Markov chain. Assuming finite first and second mom!nt conditions,

—

the linit behavior of the compartments are examined. It is shown that the

Jdiverging compartments under suitable normalization converge to functionals of /)»u/f/unu

Brownian motion, independent of those compartments which converge without

P

I
» -
- ' 2

<> - —_—
- - . s A YY) . P Y ’ / ’. . ‘
normalization. SR Dhlmsip? e N il

DIK £iiE COPY -

e e gm0 o g

-

LT S R LA .
.t et et L T ettt Lt
DN . S

b PSP APR AP PP LIPV AP




— YV VYV VTV W W et

Ako

ON THE LIMIT BEHAVIOR OF A MULTI-COMPARTMENT STORAGE MODEL

WITH AN UNDERLYING MARKOV CHAIN II: WITH NORMALIZATION

by

Eric S. Tollar

FSU Statistics Report M694
USARO Technical Report No. D-77

February, 1985 .

The Florida State University ;
Department of Statistics |
Tallahassee, Florida 32306 L

Research supported by the U.S. Army Research Office under Grant
DAAG 29-82-K-0168,

Keywords: Storage model, Markov chain, Dual Markov chain, Auxilliary
Markov Chain, Multivariate Brownian Motion.

AMS (1980) Subject classifications. Primary 60G99

N ] v E] Y LA B 2 S P d e R ey

/92367 3/-/99




On the Limit Behavior of a Multi-Compartment Storage Model

With an Underlying Markov Chain II: With Normalization

by

Eric S. Tollar

Abstract

The present paper considers a multi-compartment storage model with one way
flow. The inputs and outputs for each compartment are controlled by a denumer-
able state Markov chain. Assuming finite first and second moment conditions,
the limit behavior of the compartments are examined., It is shown that the
diverging compartments under suitable normalization converge to functionals of

Brownian motion, independent of those compartments which converge without

normalization.




1. INTRODUCTION

In this paper, a multi-compartment storage model with one-way flow is
considered. This model is a generalization of a one compartment model considered
by Puri (8], Puri and Senturia [9], [10], Balagopal [1}, Puri and Woolford (11],
and others. In Tollar [12], it was established that under first moment criteria,
as time increases, the subcritical compartments converge in distribution,
while the critical and supercritical compartments diverge. This paper examines
the limit behavior of the divergent compartments when suitably normalized.

In section 2, the model being considered is described, and some results in
[12]} are summarized. In section 3, intermediate results for meximms of pro-
cesses defined on a Markov are obtained. In particular, these results show
that the normalized difference between the process considered and the similar
maximum defined on i.i.d. random variables converges in probability to zero.

In section 4, it is shown that the divergent compartments appropriately normal-
ized converge to functionals of Brownian motion and that this behavior is

independent of the convergent compartments.

2. THE MODEL

Let {Xn; n=0,1,2,...} be an aperiodic, recurrent, irreducible, Markov
chain with denumerable state space J and stationary measure 1. For i e J,
let {_Y,n(i) = (Vo’n(i), ,Vk’n(i)): n=1,2, ...} be a sequence of i.i.d.

k + 1 - tuples, independent of {xn} and of (y,n(j)} for j#i. We then consider

a model in which Z(n) = (21(“)' cees Zk(‘n)) represents the amount of material at

time n in the k compartments, For each coﬁpartment &, 2 z(n) is given by
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Z,(n) = min’ (S (3) + (Sy(5,) ~Sy(§y)) +...
AL 053y 5. 55, 50 o'1 14320 = 5,00,

+ (S_Z-l(n) - Sz_l(jz_l))l (2.1)
-min [Sa(3) + ...+ (Sp(n) -S,(5,))]
OSjIS...Sj£Sn 0’1 £ JALY 4
vhere Si(m) is defined by
n
S;(m) = 5Z1Vi'j(xj)' (2.2)

For further discussion of the motivation and origin of (2.1), see Tollar [12 .

For 0s £sk, we define E"VL by
EV, = ] mE[V, ,(§)]. (2.3)
L jeg3 £,1

We will refer to compartment £ as either subcritical, critical or supercritical
when E"V!_- 0 Sm]i_n< 2 (Eﬂvi) is greater than, equal to, or less than 0, respec-
tively. It is established in [12] that as n tends to infinity, the subcritical
compartments converge, while the critical and super critical compartments
diverge.

The convergence properties of the compartments were shown to not depend
on the initial distributions of the compartments. Further, for {ﬁn: n=0,1,...}
the dual Markov chain (for definition, see Cinlar [4]), it was shown the limit
behavior of Z(n) coincides with the behavior of z(n) = (21(n) y sovs 2k(n)) .

where ii(n) is defined as follows:
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\ 2(:1) =

. min (851G +8; 2 ()-8, 5G4 I8y(m)-85(5;_) D)

°‘j15“'sji-15“

. a - a & .. 2.4
- min (Si(31)+...+[So(n)-So(Ji)]). 2.4
0<j;<...€j.<n
1 i
where § 3 (m) is defined as
S Tv.,@ 2.5)
Sn = v. - .5
J(m) 2iq ],Z( ¥ (
It was also established in [12], that the initial distribution of Xo was not
related to the limit behavior of the compartments. As such, we will set

Z2(0) =0, and XOE n, and use either expression (2.1) or (2.4), whichever proves

more useful.

3. INTERMEDIATE ASYMPTOTIC RESULTS

When working with processes with underlying Markov chains, the typical
approach (see Chung [3]) is to use the return times to an arbitrary state
io € J to generate a sequence of i.i.d. random variables. It is shown that
functionals of these i.i.d. random variables have the same asymptotic

behavior as the processes under consideration. This is the technique to be

VPP

used on certain functionals related to the process Z(n) in this section.

L an )

For arbitrary io € J, we define tn(io) recursively by

tn(io) = min{j > tn_l(io): )(j = io}, to(io) 0. (3.1)

Let {Yn(i), n=1,2, ...} be i.i.d. sequences defined for all i ¢ J, independent

of {Y (j), n=1,2,...} 1#j, and also of (X }. If Eﬂ|Y| <o, it can be




shown (see Balagopal [1]) that
tg(iO) (3.2)
Y*((.) = [ Y. (X.)] .
n"0 L 171
1-tn_1(io) +1

is an i.i.d. sequence with E[Y;(io)-(tn(io) -tn_l(io))E"Y]==0, forn > 1.

If we let ogo = E[Y;(io)2|x0= igl, we have 02 < = if and only if c% <= for

0
all j € J, in which case n.0% = L 0% . We will also define
J) 0 10
Y tn(iO) 3.3)
“"fn-10

In most cases the state io is understood, and i, will be dropped in expres-
sion (3.1), (3.2), and (3.3). Let {(Yl,n(i)""’ Yz,n(i)):xta 1,2,...} be an
i.i.d. £-tuple sequencc, independent of {Yl,n(j)""’vt,n(j)): n=1,2,...},
i # j, and also of (Xh}, the Markov chain with stationary measure 5. Further,

let us define M, (n) by
0

n
DIR{CACE S BN 3.9

i=l

M, (n =
-0
We then have the following intermediate theorem.

. -] 2 = -]
THEOREM 3.1: let E_|Y.| < =, and E(Y3|X =1)) <= , 1si<s£ . Then as

n-+o '
£ Ik
a2 max (y 3} Yy ;X))
Osjls...sjegn k=1 iﬁjk_1+1 ’
¢ Ik
- max (] 1 Yi,i)] B o,

OSjls...szguio(n) kal isjk_l+1

L e vy
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PROOF. It can easily be seen that

£ Ik
comax (] 1 Y 04) (3.5)
OSJIS'.OSJLSH k=1 1=Jk-1+1

P $ |
- max ( Y, .0t Y Y v ()
S IySeeeSipS ty, ) Ot T e s e
0

4 £ n

Z lYJ i(xi)l"' 2 2 |Y
j=1 i=1 ¥» j=1 dsty o+ 1

iO

<

X .

I (o

j,i

12 & Y
Since P(t; <=) = 1, we have that n ) A

(xi)|30.
je1i=1

i
In (Chung [3]), it is shown under the assumption that Enlel <o, that

n
n-1/2

Y, .(x.)| Bo.
. lY; ;(xpt >0

= tMi ) +1
0

Thus, we get from (3.5) that

L Jk
omax () 1 Y 1 () (3.6)
OSJIS...SJ£Sn k=1 1=Jk_1+1

n-1/2|

Ji £ Ix P
- max ( Y, (X))t ) ) Y, .(X.))] > o.
. . . 1,i*%i & L. k,i*"i
tl < Jl S.ea S JLS tMi (n) 1=t14’1 k-z l—Jk-1+1 ’
0

ST

Let us define tMi () +1 H tMi (n) +1, rosl, and for 1sr 2

1 s...Srsti n)

0 0 0




..............................

B(ry, Ty voes Tp) = (g, eevndpdt 395355053,
(3.7)

<t

T s
2

<t trSJ +1""’tr S]£<t

2 2

r£+1

( rp) 5 :

U(r,, ..., Tp) = max [ (Y, .(X.,)

1 £ (jl,--~,j£)€B(r1,...,r£) k=1 i=tr +1 k"l 1
e

J.e {3.8)
- Yyap,1 (%)) ¢ izt +1Y£,i(xi)] .
Then we have
5 i
| max () Yy LX) D) Y 1))

ty <Jp 5. ststmizth 1=t41 k=2i=5,,4

f Ek |
- max ( Y, .(X.))
1sr,S...STpsM, (n) k=1i=t_ -1 k,i*"1

1 L7, T-1

< max (U(tl,...,rf)) (3.9)
15rls Srstiofn)

= max ( Y, .(X.)-Y, ., (X,
k=1 15j<Mi (n) igtj+1 k,i*"i k+1,i%71
0

t.+1
+  max ( i |Y£ i(xi)l)'
153’<Mi (n) i=tj+1 !
0

.............................................................

....................
..................
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Since we have
tj,.,l

P( max ) IYL i(Xi)i) > e/n)
1Sj<b; (n) iTtel
0

n tj+1
SP(u (]} 1Yp ()1 > emh) (3.10)
j=li=t_+1
J
t,
s n P( X IYt,i(xi)‘ > E/H))

i=t1+1

2 .
and E(\Z,I‘x0= ig) <=, we get that

t

2
lim n P( ) IYI' (X1 > e/n) = 0, (3.12)
n-+o i=t1+1 ’ 1

with a similar result for the other term in (3.9). Thus we get

12 p Ik
n r max ) Y, (X))
. . Lo b R
Os;ls...53£Sn k=1 1-]k4+1
(3.13)
t
L Tk P
- max (y 1 Y, (X;01 0.
lerS.HSrLSMi(m k=li=tr .1 ’
0 k-1
and the theorem is established. 0

Before continuing with results on the maximums of sequences defined on

Markov chains, we establish the following lemma about i.i.d. random variables

with finite variance and means less than zero.




LEMMA 3.2
EX?2 < », Then, as n + =, n"1/2
PROOE. Set S, = § X,

3 i=11 ’

max

Rn=

0<jsks<sn i= j+l

0s

k

(1

-8 -

Let {xn: n=1, 2, ...} be an i.i.d. sequence with EX < 0,

|3
max (
jsksn i=j+l

xi)Ro.

max

X{) =
0<j<ks<n

(Sk - Sj) .

For any m, divide [0,n] into {m/n + 1] approximately equal sized parts, setting

s “lq . - . .
n, = {i/m m™ "] with a1 where [x] is the greatest integer of x. Then

let
il = min{i: nizf,} and (3.14)
Rn p = max [(max(0, max (s. -S.))1] (3.15)
M 9<j<n ijs}ts[m/r'f‘+1] kK 7
Clearly, for all n,m,
Rn 2 Rn,m (3.16)
. -1/2 P .
To establish that as n,m+« , n (Rn- Rn m) 0, we define
. n
E = {w: n [ max (S,-S;) <seml,
k,n 2=10cj<2 £ 73
(3.17)
max (Sk-S.) > e/n },
0<jsk ]
( E /e
Ek,n,l = k,nn{m: Sni - Sk 2 -gvn/2
‘ k (3.18)
Ek,n,2 = Ek,nn{w: sni =S¢ < -e/n/2
\ k




..............

From (3.17) and (3.18) it can be seen that

n n n
P(R.>evn ) = P(E, ) = P(E ) + P(E ). (3.19)
n~ 'R k§1 k,n k§1 k,n,1 kzl k,n,2

Also, from (3.15) we have

P(Ek,n’l) < P(Ek’n, max (S = - sj) > e/n/2 )

0sjis<k i
(3.20)
< P(Ek’n, Rn,m > ¢m/2 ).
Thus, we have
n
I PGB )€ PR, o > evn/2 ). (3.21)
k=1 >
Since Sn' —Sk is independent of Ek,n’ we have
1
k
P(Ey n o) = p(ek.n) p(sni -5 < -e/n/2). (3.22)
k
Since the X's are i.i.d. we get
P(S, -5, < -e/n/2) = P(S, _g < -e/n/2)
lk 1k
(3.23)
My -k
=P( ] (X-EX) < -e/n/2 - (n; -k)EX) .
i=1 k
As can be easily established, n; -k < /ﬁ'm'l +1. Since EX<O,
k (3.24)
n.
1k-k
P(S, S, < ~e//2) <P( ] (X -EX) < -/ (e/2+ L en ¥2E0))) .
i i=1
k

............................................
.................................
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For any ¢, choose m and n sufficiently large so that ¢/2+ (m°1+n°1/2)EX > 0.

Then from Chebyshev's inequality, we get

PGS, =< -e//2) < (ny - 0o2n"t (e/2+ @ 427V 2Ex) 72
iy (3.25)

< (Ao leDe2ne/2e @lenHEN)? |
Therefore

n n
A P2 s 3 P O ol )0 e/2+ @ 0"V ?Ex) 2

(3.26)
< ("n n e 1)o? n'l(e/Z . (m'lc-n'l/z)h'x) -2
Thus, for allm > -2EX/e, as n + »
)
lim P(E ) = 0. (3.27)
n+e k=1 k,n,2

Combining (3.16), (3.19), (3.21) and (3.27), we have for m > -2EX/e, there is

an N where for all n > N,

P(Rn’m>ev’ﬁ') < P(R >e/n) < PR, >e/i/2 ) se (3.28)

Clearly, from (3.15) we have

R = max { max (Sn

-S.)). (3.29)
n,m lsks[mv’17+1]0555n_k J

k

.......................................
R T T T T T S T AT SO
---------------------------------
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Thus,
(mvn + 1]
PR, ,>&Mm) s ] P( max (S -S.)>éM)
’ k=1 0<jsn, J
(3.30)
{m/n+ "]
= ] P( max (Sj)>6/rr),
k=1 0s<jsn,
d
since max (Sn -8.) = max (S,). As such,
0sjsn 'k 0<jsn, 3
P(R. _> &M ) < [mn+1] P(sup (S,)>6/n) (3.31)
n,m j2o J

By (Kiefer and Wolfowitz [7]), since EX2 < », we have E sup (SJ.) < », Thus,
jz20
by the well known result, lim xP(X>x)=0 if EX+<°°, we get
X+ o

lim [m/n'+ 1] P(sup (sj) >8/Mm ) =0, for all §. Thus, we have P(R > 6vn )+0,
n-+owo© jZO 4

which yields from (3.28) P(R >evn ) + 0. a0
In the following theorem, define (21,12, vees I.m) as the indices of

E"Yl, eses E‘n'YZ such that E"YZ:j =0.

32 . .
THEOREM 3,3: Let E |Y,| <=, E ¥, <0, and E(Yilxo=1o) <o ,1<i<l,

Then, as n+x,

2 Jx
a2 max (Y 3}

Y, . (X))
05j;S...sipsn kel d=j ;o1 k,it

m jk
- max S sz i)]go.
0<j,s... o [nion] k=1 i=j, ,+1
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ROOF: From Theorem 3.1, we know that we need only show that

£ Jx
n~ 12 max @) z le,i)
0sj,s...5§,s Mio(n) k=1 i=j, ;+1
(3.32)
m jk
. max (1 3§ vzk,in Ro.

OSJIS Sjms['rrion] k=1 i=j, _,*1 q
"Since n'lMiO(n) -+ "io , there is a decreasing sequence {en: n=1,2,...}
where e, ¥ 0 and for all n,

P([(nio - en)n] < Mio(n) s [('nio + en)n]) >1- € - (3.33)

Let us define ll(n) = t(wi - en)n], £(n) = [nion], Zz(n) = [(nio+en)n] .

0
I Then, for any €>0,

2 Jx
P(| max (] I Yy
. . [ TNR ,
IS]IS...SJ£SMio(n) k=11 Jk_1+l

2 Ik
- max @) Z e i)l > e/n )
ISjls...szsl(n) k=1 i=j_q*1 7’

e
s P( max (I 1 Y3 i)
1j;5...85,s () kel i=j, , °°

t I (3.34)
- max (I I yo>emd)ee
lsjls sjeszl(n) k=1 i-:jk_1 k,i n
i
max @) Y?

<P -
oo S3psy(n) Q= (n)+1 o1

(
Zl(n)sjls

¢ Jx

+

Y i Yp ) >efn)+e
ka2 dsy, _+1 &

n L]
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Because the Yz i's are i.i.d, we have

Now,

A

b £ 3
max ( Yy . o+ Y¥ )
L) $5,8 ... 55,5y 2 ) +1 D1 ka2 =gy e k,i
d S
= max ( Y* .+ Y¥ .) .
. 20 1o g5, .8 k,i
05315...sj£s£2(n)-£1(n) i=0 k21jk_1
we have
3yt m k1
max ( Y .+ Ys .)
0<j <...5j S &) - L) 120 b e izjk_llk’l
Taob 'y
max ( Y* .+ Y* ),
05, SuenspsLym) - L () i=0 1,i o i=jk_1k’1
Ty o105
max ( Y% .+ Ys )
055 5... 83, s -2, =0 Al k=2 iy, Gt
m lk'l s-1
!l [ max (105 -3 3]

k=1 j=£k_1+1 0sr<s< lz(n) - l.l (n) i=r

4 s-1
max ) e ).
k=1.m+1 0sr<sc Zz(n) - £1(n) i=r

Since E(Y] ; - sz,i) <0 for £ ,<j<k, we have from lenma 3.2 that

_1/2 S-l
n max (zY?i-szi)go.
OSrSSSI,z(n)-Ll(n) j=r 7 ’

(3.35)

(3.36)

(3.37)
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-1/2 s-1
and similarly 'n max (3 i) o for iL .

OerSSZ (n) - l. (n) i=r J,i

In addition, since

521 o jkz-l
max Y% Yy )
()sj1 s] SZ (n) - £(n) i=0 T k21=Jk1£k’1
(3.38)
mil er~1 rni-l
2 max ( (Ys .-Y% )+ Ys .,
Osti<...s1 <& @) -£ () j=1 i=0 zj'l £j+1'1 izo Gyl

we get
o 12-1 %’ rk-l -
max ( Ys .+ Ys .) > )
0< rS...sx slz(n) Z (n) i=0 1'1'1 k=2izrk_1 lk’l =
mil ril '/_
< P( max ( Y% ) > evn/n) 3.39
j=1 Osrsl {n) - ll(n) i=0 21’1 £j+1’i ( )
( i ey
+ P max ()Y ] > /m).
0srsf,(n) - £ (n) i=0 zm’1 ST
For 1< j<m, we have E(YE .-YZ = 0, and
j J+1’ (3.40)
r-1 B 1/2 -
/2.
P( max (leoy .-v3 > &1 &, () -£, /%
0srsbym - £, () i=0 G L R () - £, (/2 T
’il ¢ 1,-1/2 /2
< P( max () (Y - Y% ) > = (2 " ( -2 .
0$rs£2(n) - £,(n) 120 ;.j.i Zjol'l) g (2 +n ") lz(n) L)
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r-1
Thus, since max ( Z YE i-YZ .) converges to an absolute normal,
0<rs<n i=0 j’ je10t

(see Erdss and Kac [6]), we have that since (2r:n+n'1)'1/2

+ « that
expression (3.40) converges to 0, regardless of whether or not l;z(n) - Zl(n)

tends to infinity. As such, from (3.34), (3.36), (3.37) and (3.39), we

have that
£ Jx
n'llz 0 max (kz ) (X )
€$j;S...Sjpsn k=1 i=j +1
1 4 k-1 (3.41)
k-l
- max (Z Z Yii)]-’o.
lsrls srls ["i nl k=1 1-rk_1

0

Finally, note that if l_z(n) - ll(n) is replaced by n in (3.36), (3.37), we

get that
-1
£ Tk
n-Y2¢ max () Z e i)
0 ST)S...ST,S [nion] k=1 i=ry
m k -1
] max ] sz 31,80,
0<sr s...8T, s[wi n] k=1 i—
which coupled with (3.41) completes the proof of the lemma. ]

In the following section, the limit behavior of the critical and super-

critical compartments is established.

4, THE ASYMPTOTIC BEHAVIOR OF THE NORMALIZED PROCESS

The behavior of the normalized critical and supercritical compartments

can now be established. In addition, it will be shown that the limit distri-

bution of the normalized compartments is independent of the limit distribution
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of the subcritical compartments. The lemma needed to establish the asymptotic
independence of the subcritical and the critical and supercritical compartments

will be stated without proof, since it is straightforward.

LEMMA 4.1 Let {(xl(n), Y,(n)), n=1,2,...} be a sequence of random vector

couplets defined on a Markov chain {Xn}. Let ¥,(n) R xlas n + =, Further,

for all m > 0, let there exist a random vector sequence {X,(,m)r n=m, m+1, ...}

defined on the chain {Xn} such that
1) X'Em) - xz(n) 13 0, as n+ «, for all m > 0.

2) PQL@ s g x™ s yix) = Py m s xxPX™ s yIx), fornzm,

H PE™ s y|x i) + P(Y,sy) asn+ e, for all ieJ, for all m, for all

continuity points y of )’2 Then, for all continuity points (x,y) of the

distribution (Xl ,XQ) , we have

lim P(Y,() sx, Y,(n) sy) = P(Y, sx) P(Y,SYy).
1 2 ~1 ~2
n+w
We now establish the main theorem of this paper. In the k compartment
model, 1let (i1 s seey im) be the indices for the subcritical compartments, and
let (jl’ ey l_) be the indices for the critical or supercritical compartments,

so m+£=k. Further, for ease of notation we define for 1<ic<k, ' by'

. = min (E_V.,) - E_ V..
i 0sj<i Tj i (4.1)

Then the following theorem holds.

.....................................
.........................
---------------

.............

.........................

.........
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017—

lim P(Z. (n)sx, ,..., 2. (n)sx, , Z, N)-np, sx, n"’'",
n+e 11 1 1y 9 3p 3

veu, Z, ) -nm, sx. nt/?
2y Je

Ie

= P(Z; sx; .00,y Sx0) 0 FOWG(), oo, W (9))

1 1 m m

for all continuity points (x. ,...,x, ) of (2. ,...,Z. ), where
4 11 lm — 11 lm P

wo(-) g sres wk(-) is multivariate Brownian motion with 0 drift and appropriate

I variance matrix 02, and F(+) is some appropriate functional.

PROOF, We will first find asymptotically equivalent expressions for the

—_——

critical or supercritical compartments. Let compartment £ be either critical

or supercritical. From (2.1) it can be shown that

Zy(n) = i (S,(3,)+(5,(3,)-5,(3,))*...+(S (m)-S (i ))]

B0 B0 U500 5, 05,0

zil (4.2)

- Z.(n) - min [SA(3 )+« +(S,(n)-S,(G,))]
j=wel J 0sj;s...Sjpsn oth £ £t

for w defined as w = max{j <Z&: EV.= min E Vi}‘ By (Tollar [12]), we
J o0si<e T

have that n'l/zzi(n) 13 0, for w<i<£ . Thus we need only consider

................................
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min [S,(§j) +...+ (S, (n)-S (.1 (4.3)
0<j;s...%j <n 0t W Wit
- min (Sn(54) + ...+ (Spm) -S,(i,))]
OSjls...SjI_sn 01 £ L
Wil
= § (n) - max (rs, (G_,1) -8, )I-S (5 _,q4)-S (3 )}
w OSjIS...Sijn{ﬂFO w'im+1 welm m* m+1 m*’m
L-l . 3 - -
- Spln) + 05 <™ <5 cnt mgotcsgom)-szum)J-rsm(Jm)-sm(Jm)J)}.
1S+ 53,

From the definition of w and the assumption that cell £ is either
critical or supercritical, we know that E"Vm- EﬂV!_s 0 for 0sm<£, and
E V,-E.V,s0 for 0<m<w. Also, it is well known (see Chung [3]) that

[v. n]
- 10

n2s () - .21 v:.1%0. (4.4)
i= ’

Thus, from Theorem (3.3) and (4.3) we have

[m. n]
1
-1/2 9
n" 0z, m) - .2 V- V3 3)
i=1
P T
+ max { (v* . -v* )}
0sj,s...55.s [nion] m=1 i=j  ,+1 Wl ki
T Jm
- max (I I v -v ) (4.5)
0<j;<...55 5 [wion] mal i=j .+1 m’
jr+1
¢ 3 wp-vronBo,
igjr+1 » ’

vhere (kl, ceey kr) are the indices less than w where E“Vk- = E“Vw. As such,

1
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[nion]
-1/2 -1
n [Zl(n) “Nuy - ) {V""’,’:.L - Vz,i - "io uz}
i=0
i
+ max ( Ve -V L)
. ) Lo b, w,i 'k ,i
OSJIS...SJrS[viOnJ n=1 1-Jm_1-1 m’
§ sz (4.6)
- max { v ;-Vi i)
OSjls '..SJI‘*IS["iOn] m=1 1=Jm_1+1 m
j:+1
o 1 wp-va oo,
i=jr+1 ’ »

Note that in (4.6), if EﬂvW > vat , then from lemma 3.2 it follows that

172 r Jm Jrs1
n max ( Z 2 Ve .-V* L )e 2 (VZ =V* .)) R o,
0<j,s...<j_ . <[w, nl m=1 i=j _ +1 41 kpod ey o B2 W1
31703 pa)®t 7y m-1 Iy

0 4.7

in which case, this term can be deleted from (4.6).

Thus, from (4.6) we have that

-1/2 ) ] L
n [(ZJ- (n) ntlp ij(n) nt » coey ij(n) nqu)]

1 2

is asymptotically equivalent to a functional of (Yo,n(')' cees Yk,n('))’

where for O0sts1,
(nr. t]
)
-1/72 i

i=1

-1
Yl,n(t) =n (Vz'i- ﬂio val) . (4.8)

To see this, one need only note that

.......................
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J
r “m
n-1/2 . omax (1 _z. vE VR D)
OSJIS...SJrs[ﬂ'iOn] m:l 1=Jm_1+1 m
T 4.9)
i sup Iy, (50 - L (g () -Y (5. 0],
0ss;s...s5 <1 w,ntTl 2y kpnom k_,n‘"m-2

with similar relations for the other necessary terms of (4.6). Thus, for

(jl, jz, ey jt) the indices of the critical or supercritical cells, we have

-1/2 . P
n {(Zj (n)-n-uj ,...,ij(n)-nujz)}-h(YO,n( )""’Yk,n( )) + 0, (4.10)

1 1,

for h(-) an appropriate functional on Ck*lfo,ll. That h(-:) is continuous is
clear from (4.6), so we have by the uniform convergence of (Y0 n(1),...Yk n(1))
» ’

tomultivariate Brownian motion (see Billingsley [21], Donsker [5]) that

h(¥g n(+ds +ees Yy 1 0)) $ ROHGED, oo (), @.11)
where (W (¢), ..., W (+)) is a multivariate Brownian motion with drift 0 and

. o2 .
variance matrix o~ given by

(o‘o)ij = "10°°V(V§,1’V§,1) . (4.12)

To complete the proof, we need only show the asymptotic independence of

the critical and supercritical cells from the subcritical ones. This can be

accomplished by appealing to Lemma 4.1. For (il’ ...,im) the subcritical

indices, we know from (Tollar [12]) that '
~ A als. '

(Zi m),..., Zi (n))y -+ (Zi s e ey Zi ). (4.13)
1 m 1 m )
Also, for (jl""’ j£) the critical or supercritical cells, let .
b
O
S e P e e R S i L e s S
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T
5 (m) 1
237 M) = min ()Y v, 1 i(ﬁti)
Js mer,<...Sr. <n i=m+l ™
1 Js-l
T . n .
) Vi 2,3 e z Vo,1 (X3 (4.14)
1=r1+1 [ i=r. +1
j.-1
[
P vy Gpeen ] v,
- nin ( V., (X)) +...+ v, .(X.)).
m<r, €...Sr. Sn i=m+l Jgp17 1 i=r, 0,i"1
1 JS ]s+1

To apply Lemma 4.1, let

Y(n) =(Z @), ..., 2. (),
~1 11 lm
__=1/2 . o )
Y,(n =n (2j1(n) n.ujl, zjt(n) nujz))
(m) _ -1/2 o(m) . 5(m) .
Y n (Zj1 (n) nujl, cees ij (n) npjz)).

Clearly the conditions of the lemma are met, which yields the sought after

independence. This completes the proof of the theorem. a

To highlight the nature of the functional cited in Theorem 4.2, we will
state without proof the marginal asymptotic behavior of any critical or
supercritical cell as a corollary of Theorem 4.1, as it follows directly from

(4.6) and (4.7).

COROLLARY 1. For a fixed £, let w = max{j <4£: E“_V:i = min EV.}, and
0sj<&
(k1’k2’ ceey kr) be the indices such that ki<w and E"vki = Eﬂvw. Then if

T T T T R T T T N T N T T T e T T T e T e

A
4
i
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1) compartment £ is supercritical,

. d
n I/Z{Zz(n) - n(EV, - EVYY S W (1) - Wy(1)

T
- sup (s - T O
1 m=1

(s ) -W (s .)));
0<s S...8s < m k= m-1

m

or if 2) compartment £ is critical,

-1/2 d T .
n Z,(m) » W (1)-W,(1)- sup W (s)- (W, (s)-¥, (s_ .0
£ w £ 0ss;<.. .55 51 wor mzl kp ® ok tmel

T
+ sup (wz( sr+1)' El(wk

OSSIS. . S Sr+151 m= m

(M (s 000, (3 )W, ()

where (wo(-),..., wk(e)) is multivariate Brownian motion with drift 0 and

_ o2 given by (4.12).

E The expressions for h(-) given in Theorem 4.2 and Corollary 1 can
obviously be improved upon for the various specific arrangements of critical,
supercritical, and subcritical cells. Some of the limit distributions for
certain arrangements of critical and supercritical cells have densities that

can be expressed in integral form, but it should be noted that many of the

Tr T Y TE.

limit distributions seem to not have such simplified forms. As such, the
expressions in Corollary 1 camnot be noticeably simplified to expressions

that do not use functionals of Brownian motion.

5. CONCLUSION

There are several directions of further research left unanswered in this
paper. While the asymptotic behavior of the critical and supercritical models

were given in Corollary 1, nothing about the limiting distribution for the

.......................
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subcritical cells other than existance was specified. Any charactcrization

of this limit, however, seems to be extremely difficult. For the single
cell model, results were obtained by Puri [12), but the techniques there do
not seem to generalize to the present case.

Results for more general flow structure than the one-way flow used
in this paper seem to requirce Jdilferent techniques than uscd above. Unlike
the one-way flow rodel, there appears to be no closed forn expression for

Zi(n) in the more general framework.

The model could be extended to continuous time by considering an

Results in this

underlying semi-Markov process instead of a Markov chain.

area are presently under preparation.
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